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Abstract
In comparison to age-matched men, young women are at increased risk to suffer from venous thromboembolism (VTE).
Some risk factors of inherited and acquired thrombophilia are known, but approximately 30% of the overall risk remains
unexplained. Recently, a role for microparticles (MP) in coagulation has been suggested. We investigated, if gender- and
menstrual cycle-specific differences in circulating MP exist. Platelet- and endothelial cell-derived microparticles (PMP,
EMP) and subpopulations thereof were evaluated flow-cytometrically in healthy women (n¼ 27) in different phases of their
menstrual cycles (follicular phase: n¼ 14, luteal phase: n¼ 13) and in healthy men (n¼ 18). Additionally, D-dimer levels
were determined. Compared to men, women had elevated numbers of annexin V-binding MP (p¼ 0.007), PMP (CD61;
p¼ 0.013), P-selectin-exposing PMP (p¼ 0.002) and E-selectin-exposing EMP (p¼ 0.009). During the luteal phase,
women had strongly elevated concentrations of MP, PMP, P-selectin- and CD63-exposing PMP as well as E-selectin-
exposing EMP (p¼ 0.001, p50.001, p¼ 0.004, p¼ 0.003, and p50.001, respectively), and the ratio of P-selectin-exposing
PMP/platelet increased more than three-fold as compared to men (p¼ 0.01). When different phases of the menstrual cycle
were analysed, MP (annexin V; p¼ 0.025), PMP (CD61: p50.001; CD63: p¼ 0.015) and E-Selectin-positive EMP
(p¼ 0.006) were all increased in the luteal phase. Although D-dimer concentrations in women were increased compared
to men (p¼ 0¼ 0.006), no menstrual cycle-specific differences were observed. In summary, circulating MP
and subpopulations thereof are increased in women when compared to men, and this increase seems to be modulated
by the menstrual cycle. Therefore, circulating MP may be an additional risk factor contributing to the hitherto unexplained
procoagulatory state of young women.
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Introduction

Circulating blood cells and endothelial cells (EC)

release microparticles (MP) during cell activation

or apoptosis, partial or complete lysis (e.g. by

complement), oxidative stress, or high shear [1, 2].

MP are therefore considered to be a general indicator

of injury and stress [3]. They also promote throm-

bosis and inflammation [4].

Circulating numbers of MP and subpopulations

thereof have been associated with various

disease states. There is strong but still circumstantial

evidence that altered concentrations of platelet-

derived MP (PMP) are associated with e.g. diabetes,

hypertension, myocardial infarction, and sepsis

[5–8]. Endothelial cell-derived microparticles

(EMP) are elevated in acute coronary syndrome,

antiphospholipid syndrome, multiple sclerosis,

preeclampsia, and thrombotic thrombocytopenic

purpura [2, 9–12].

The pathophysiological relevance of changes

in circulating numbers of MP is a topic of
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current research. The role of PMP is best known

[13, 14]. They provide an anionic phospholipid

surface that enables efficient formation of tenase- and

prothrombinase coagulation complexes [13].

Detection of PMP-associated tissue factor (TF)

emphasizes a possible role not only in supporting

but also in initiating coagulation [15]. EMP are also

capable of initiating coagulation via a TF- and factor

VII-dependent pathway [16–18].

During platelet activation, intracellular granule

membrane glycoproteins (GP) become exposed,

including P-selectin (CD62P) and gp55 (CD63)

[19, 20]. Van der Zee et al. [21] suggested that

measuring P-selectin- or CD63-exposing PMP may

be a feasible and reliable method to assess the in vivo

platelet activation status. They showed that both

P-selectin- as well as CD63-exposing PMP were

increased in patients with peripheral arterial disease

and myocardial infarction.

Women545 years have a higher risk of developing

venous thromboembolism (VTE) compared to age-

matched men [22–25]. Possible risk factors are

pregnancy, puerperium, oral contraceptives, and

hormone replacement therapy. Nevertheless, about

30% of VTE remains unexplained [26, 27].

In this case-control study, we determined the

concentrations of circulating MP as well as of PMP

and EMP from activated platelets and endothelial

cells, respectively, in healthy women in different

phases of the menstrual cycle and age-matched

healthy men.

Methods

Study population

Signed informed consent was obtained from all

participants, allowing analysis of all clinical

and laboratory data mentioned in this paper.

The Human Investigation Review Board of the

Ludwig-Maximilians-University Munich approved

the study.

Blood samples were obtained from 27 healthy

women and from 18 healthy men (no history of

thrombosis, no smoking, no medication). All parti-

cipants were Caucasians. Body mass index was

between 20 and 25. All women had regular

menstrual periods and ovulatory cycles. None of

them had taken oral contraceptives for at least 6

months. The menstrual cycle was subdivided into

a follicular (progesterone� 1 ng/ml; n¼ 14) and a

luteal phase (progesterone� 6 ng/ml; n¼ 13).

Luteinizing hormone (LH) and 17ß-estradiol (E2)

concentrations were also assessed.

On average, LH concentrations tended to be

higher in the follicular phase (8.7� 12.6mU/ml

versus 4.5� 3.2mU/ml), while E2 concentra-

tions were comparable (104� 90 pg/ml versus

113� 44 pg/ml).

Blood sampling and measurements

Blood samples were taken by puncture of the

antecubital vein without tourniquet through a

20-gauge needle. For MP analysis, platelet-poor

plasma was prepared by centrifugation at 1550� g

for 20 minutes within 15 minutes after collection.

The plasma was then shock-frozen in liquid nitrogen

for 15 minutes and stored at �80�C until assayed.

Serum concentrations of progesterone, LH, and E2

were measured using an automated immunoassay

system (Roche Elecsys 2010, Roche Diagnostics;

Mannheim, Germany).

D-dimer concentrations were determined using

a latex-amplified immunoassay system

(STA-LIATEST-D-dimer, Diagnostica Stago;

F-92600 Asnières, France). The test-specific detec-

tion limit was 0.25 mg/ml. D-dimer levels below

detection limit were regarded as negative.

Reagents

Fluorescein isothiocyanate (FITC)-labelled annexin

V, phycoerythrin (PE)-labelled annexin V, and

IgG-PE were from Immuno Quality Products

(Groningen, The Netherlands). Anti-CD61-PE and

anti-E-selectin-PE were from BD Biosciences

(Heidelberg, Germany), anti-P-selectin-PE,

anti-CD63-PE, and IgG-FITC from Immunotech

(Marseille, France), and anti-CD144-FITC from

Acris (Hiddenhausen, Germany). All antibodies and

annexin V were diluted with phosphate-buffered

saline (PBS; 154mmol/l NaCl, 1.4mmol/l phos-

phate, pH 7.4). Final dilutions were: Annexin

V-FITC 1:100 (v/v), annexin V-PE 1:200, anti-

CD61-PE 1:100, anti-P-selectin-PE 1:100,

anti-CD63-PE 1:20, anti-CD144-FITC 1:20, and

anti-E-selectin-PE 1:20. The latter antibody specifi-

cally stains MP exposing E-selectin from TNF-�-
stimulated human endothelial cells, as demonstrated

previously [28].

Isolation and analysis of platelet- and endothelial

cell-derived microparticles

MP isolation and analysis were performed as

described by Nieuwland et al. [29]. A sample of

250 ml frozen plasma was thawed on melting ice for

approximately one hour. After centrifugation of

250 ml plasma at 17570� g and 20�C for 30 minutes,

225 ml of MP-free supernatant was discarded. The

remaining MP pellet was diluted with 225 ml of PBS
containing 10.9mmol/l trisodium citrate (PBS/citrate

buffer). MP were resuspended and centrifuged again

for 30 minutes at 17570� g and 20�C.

After removal of the supernatant (225 ml), 75ml of
PBS/citrate buffer was added, and the MP pellet

was resuspended again. Five microlitres of the

MP suspension was diluted in 35ml CaCl2
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(2.5mmol/L)-containing PBS. Then 5 ml APC-

labeled annexin V was added plus 5 ml of a cell-

specific monoclonal antibody or isotype-matched

control antibodies. Samples were incubated in

the dark for 15 minutes at room temperature.

The reaction was stopped with 900 ml calcium

buffer (2.5mmol/l) except to the annexin V control,

to which 900ml citrate-containing PBS was added.

MP were analyzed in a FACScan flow cytometer

(Becton Dickinson; Heidelberg, Germany) using the

Cell Quest Software (Becton Dickinson; San Jose,

CA, USA). Forward scatter (FSC) and side scatter

(SSC) were set at a logarithmic gain. MP were

identified on basis of their size and density and

their capacity to bind a cell-specific monoclonal

antibody and annexin V. Cell-specific labelling with

monoclonal antibodies was corrected for identical

concentrations of isotype-matched control antibodies

and annexin V measurements were corrected for

autofluorescence. The concentration of MP/L

plasma was estimated according to Berckmans

et al. [1].

Statistics

Parametrically distributed data were expressed as

mean (�standard deviation (SD)). All other data

were presented as the median ((Q1-Q3)¼

interquartile range). Independent variables were

analysed by the Mann-Whitney-U test and Fisher’s

exact test. D-dimer data were analysed by using the

Chi-Square test. P-values 50.05 were regarded as

statistically significant. Data were examined with

SPSS for Windows (release 14.0).

Two samples from women in the follicular phase

and in the luteal phase were excluded from the

analysis of CD62E and CD63 positivity, since the

numbers were outside the normal range

(mean� 2�SD) after log transformation.

Results

Study population

Mean age of women and men did not differ

significantly. This was also the case with regard

to women in the follicular and in the luteal phase of

the menstrual cycle. Platelet counts tended to be

higher in women than in men and showed a

significant difference in the menstrual cycle, being

highest in the luteal phase (p¼ 0.009). Hemoglobin

concentrations were significantly higher in men

(p50.001). Twelve women had D-dimer levels

above the test-specific limit of 0.25 mg/ml compared

to one aged-matched man (p¼ 0.006), but no

menstrual cycle-specific differences were detected.

See Table I.

Microparticle analysis

Compared to age-matched men, annexin V-binding

MP were significantly increased in women

(p¼ 0.007). This difference was even more pro-

nounced, when men were compared to women in the

luteal phase (p¼ 0.001), as annexin V-binding MP

were elevated in the luteal phase compared to the

follicular phase (p¼ 0.025) of the menstrual cycle

(Figure 1).

Platelet-derived microparticles (PMP)

CD61-exposing PMP showed gender-specific as well

as menstrual cycle-dependent differences (Figure 2).

Concentrations of PMP were increased in women

as compared to men (p¼ 0.013), and this effect was

solely due to women in the luteal phase of the

menstrual cycle (p50.001). When menstrual phases

were compared, significantly higher concentrations

were observed in the luteal phase compared to the

follicular phase (p50.001) (Figure 2).

Subpopulations of PMP exposing P-selectin were

higher in women than in men (p¼ 0.002) (Figure 3).

On average, the fraction of P-selectin-exposing PMP

was two-fold increased in women versus men (1.9%

versus 0.8% of total PMP; p¼ 0.025), and the ratio

of P-selectin-exposing PMP per platelet was more

than two-fold increased (0.20 (0.1–0.5)� 10�3

versus 0.09 (0.04–0.2)� 10�3; p¼ 0.004).

Differences were most pronounced in the luteal

phase of the menstrual cycle: Circulating P-selectin-

positive PMP were five-fold higher than in men

(p¼ 0.004; Figure 3).

Regarding the exposure of CD63 on PMP,

differences were present between women in the

luteal phase and both men (p¼ 0.003) and women

in the follicular phase (p¼ 0.015) (Figure 4). The

ratio of CD63-exposing PMP per platelet was higher

in women in the luteal phase compared to men

(0.3 (0.5–0.7)� 10�3 versus 0.2 (0.09–0.5)� 10�3;

p¼ 0.04).

Endothelial microparticles (EMP)

In contrast to PMP, no gender-specific or menstrual

cycle-dependent differences were present in circulat-

ing CD144-exposing EMP (Figure 5). In contrast,

E-selectin-exposing EMP, i.e. EMP from activated

endothelial cells, were elevated in women compared

to men (p¼ 0.009), particularly in the luteal phase

(p50.001; Figure 6).

Discussion

Our data demonstrate considerable gender-specific

and menstrual cycle-dependent differences in circu-

lating (sub-) populations of MP. In light of these

results, we suggest that circulating MP or

Gender-specific differences in circulating microparticles 517



Table I. Study population.

Gender Women p-value Women Men p-value

Menstrual cycle (phase) follicular n¼ 14 luteal n¼ 13 follicular vs luteal (total) n¼ 27 (total) n¼ 18 women vs men

Age (years) 29� 8.4 35� 7.9 p¼ 0.07 32� 8.5 29� 3.2 p¼0.5

Hemoglobin (g/dl) 13.7� 0.9 13.7� 0.9 p¼ 0.98 13.7� 0.9 15.7� 0.9 p50.001*

Leukocytes (g/l) 6.6� 1.3 7.0� 1.5 p¼0.3 6.8� 1.4 6.6� 1.0 p¼0.8

Platelets (g/l) 247� 50 310� 63 p¼ 0.009* 277� 64 251� 47 p¼0.26

Data are presented as mean�SD (p50.05¼ significant). Hemoglobin levels were higher in men compared to women. Platelet counts
differed significantly during menstrual cycle. *represents p50.05.

Figure 3. CD62P-positive PMP (�109/L; data presented as

median (interquartile range)).
Figure 6. CD62E-positive EMP (�109/L; data presented as

median (interquartile range)).

Figure 4. CD63-positive PMP (�109/L; data presented as

median (interquartile range)).

Figure 1. Annexin V-positive MP (�109/L; data presented as

median (interquartile range)).

Figure 2. CD61-positive PMP (�109/L; data presented as

median (interquartile range)).

Figure 5. CD144-positive EMP (�109/L; data presented as

median (interquartile range)).
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subpopulations thereof may contribute to a procoa-

gulant state in young women and increase their

VTE risk.

So far, there are no data on gender- and menstrual

cycle-specific differences in MP release. Our finding,

that concentrations of PMP subpopulations exposing

activation markers such as P-selectin or gp55

are elevated in the luteal phase, may reflect enhanced

activation of platelets in young women. The observed

increases in numbers of circulating platelet-derived

MP, however, may also reflect higher platelet counts

in the luteal phase.

Focusing the literature, there are conflicting

data about platelet counts and platelet activation

during menstrual cycle [30–33]. Therefore, a long-

itudinal study on individual women with emphasis

on the effects of sexual steroids on circulating levels

of PMP and platelet activity is part of our current

research.

Our finding, that women of our study population

had higher D-dimer levels compared to age-matched

men, confirms earlier data of Rudnicka et al. [34].

These data indicate that coagulation activation may

indeed have occurred. The lack of difference in

D-dimer concentrations during the menstrual cycle

may be due to the relatively small size of our study

population.

Focusing on menstrual cycle-specific changes in

the expression of PMP from activated platelets, we

found that P-selectin-exposing PMP were increased

in the luteal phase. P-selectin is involved in coagula-

tion activation in various ways. First, P-selectin binds

to monocyte-exposed P-selectin GP ligand-1

(PSGL-1), thus triggering the expression and

production of coagulant TF, which subsequently

may be released on MP [35, 36]. Such TF-exposing

monocyte-derived MP have been shown to occur

both in vitro and in vivo [8, 37]. Second, once

platelets are activated after adhering to an adhesive

surface, e.g. a wound, P-selectin becomes exposed

and is involved in capturing "blood-borne" TF

from the circulation [38]. Third, TF-exposing

monocytic MP have recently been shown to fuse

with P-selectin-exposing platelets via interaction with

PSGL-1, thereby delivering procoagulant TF to

the platelet surface [38]. Thus, the increase in

P-selectin-exposing PMP may be a risk factor for

VTE in young women, particularly in the luteal

phase of the menstrual cycle.

There is evidence from other studies for an

increased platelet activation and fibrinolytic activity

in the luteal phase [30, 32, 39–43]. Feuring et al. as

well as Roell et al. [39, 44] investigated alterations in

platelet function during the menstrual cycle by using

a platelet function analyzer (PFA-100TM). They

found platelets to be more responsive in the luteal

phase as compared to the follicular phase. Moreover,

other authors have also reported on higher concen-

trations of fibrinogen and fibrinogen degradation

products in the luteal phase than in the follicular

phase, indicating a higher fibrinolytic activity in the

luteal phase [32, 40–43].

Other investigators studied gender-specific differ-

ences in platelet activation and aggregation and

reported enhanced platelet reactivity in women

compared to men [30, 31, 45–47]. Faraday et al.

examined the ability of in vitro activated platelets

from healthy male and female subjects to bind

fibrinogen through activated integrin �IIb�3 (GPIIb-

IIIa), which is the receptor responsible for platelet

aggregation [30]. They observed that, upon standar-

dized activation of the platelets in vitro, fibrinogen

binding to platelets was significantly increased in

women compared to men. Furthermore, fibrinogen

binding depended on the menstrual cycle and was

significantly increased in the luteal phase as com-

pared to the follicular phase. Since binding of

fibrinogen to activated GPIIb-IIIa has been sug-

gested by some investigators to be a prerequisite for

the formation and release of PMP, it is tempting to

speculate that activation of this integrin is somehow

affected by the menstrual cycle, which may lead to

the observed increase in circulating PMP in women,

particularly in the luteal phase.

The endothelium plays an important role in

maintenance of vascular integrity and haemostasis,

with endothelial cell dysfunction having been impli-

cated in the pathogenesis of both atherosclerosis and

plaque instability [48]. Although several studies

suggested gender-dependent differences in endothe-

lium-dependent vasodilatation [49–51], no studies

on menstrual cycle- and gender-specific differences

in EMP release exist.

In accordance with previous findings, Chirinos

et al. [18] demonstrated elevated numbers of EMP in

patients with VTE, which suggested that the release

of EMP and their binding to monocytes are key

events in thrombogenesis [15, 52]. Koga et al. [48]

verified that CD144-positive EMP occurs in human

plasma and that CD144-exposing EMP in plasma

can be a clinically relevant and quantitative marker of

endothelial cell dysfunction and injury. We observed

menstrual cycle- and gender-specific differences in

the occurrence of CD62E-positive EMP, which,

similarly to PMP and their subpopulations, may

reflect ongoing cellular activation.

Conclusion

Our data suggest that circulating MP may be gender-

as well as menstrual cycle-dependent. The increase

in PMP and subpopulations thereof may be asso-

ciated with an increased VTE risk in young women.

A prospective follow-up of individual women in

different phases of the menstrual cycle is now being

performed to confirm and extend these observations.
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